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Critical illness and hypovolemia are associated with loss of complexity of the R-to-R inter-
val (RRI) of the electrocardiogram, whereas recovery is characterized by restoration thereof.
Our goal was to investigate the dynamics of RRI complexity in burn patients. We hypothe-
sized that the postburn period is associated with a state of low RRI complexity, and that
successful resuscitation restores it. Electrocardiogram was acquired from 13 patients (age
55 � 5 years, total body surface area burned 36 � 6%, 11 � 5% full thickness) at 8, 12, 24,
and 36 hours during postburn resuscitation. RRI complexity was quantified by approxi-
mate entropy (ApEn) and sample entropy (SampEn) that measure RRI signal irregularity,
as well as by symbol distribution entropy and bit-per-word entropy that assess symbol se-
quences within the RRI signal. Data (in arbitrary units) are means � SEM. All patients sur-
vived resuscitation. Changes in heart rate and blood pressure were not significant. ApEn at
8 hours was abnormally low at 0.89 � 0.06. ApEn progressively increased after burn to
1.22 � 0.04 at 36 hours. SampEn showed similar significant changes. Symbol distribution
entropy and bit-per-word entropy increased with resuscitation from 3.63 � 0.22 and
0.61 � 0.04 respectively at 8 hours postburn to 4.25 � 0.11 and 0.71 � 0.02 at 24 hours
postburn. RRI complexity was abnormally low during the early postburn period, possibly
reflecting physiologic deterioration. Resuscitation was associated with a progressive im-
provement in complexity as measured by ApEn and SampEn and complementary changes in
other measures. Assessment of complexity may provide new insight into the cardiovascular
response to burns. (J Burn Care Res 2008;29:56–63)

Burns are associated with significant cardiovascular
changes. Cardiac output decreases in response to in-
creased afterload, decreased plasma volume, and myo-
cardial depression.1,2 In some nonburn models, both

direct microneurographic recordings3,4 and indirect as-
sessment of autonomic nervous system (ANS) activity
by means of heart-rate variability (HRV) analysis5,6 have
provided useful insights into how the ANS responds to
hypovolemia. However, studies applying these tech-
niques to burn patients are scarce.

Among the tools suitable for assessment of HRV
are frequency-based techniques such as fast Fourier
transform7 and complex demodulation (CDM).8

These techniques quantify respectively the strength
(power) and amplitude of periodic oscillations in the
heart rate, ie, in the R-to-R interval (RRI) of the
electrocardiogram (ECG). They are based on as-
sumptions of linear proportionality in physiologic re-
sponses to stimuli. The respiratory sinus arrhythmia is
one such periodic oscillation, which takes place in
synchrony with the respiration. This is considered a
high-frequency oscillation. Other oscillations, taking
place at lower frequencies, are also present in the RRI.
High-frequency oscillations are predominantly the
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result of vagus nerve input to the heart. On the other
hand, low-frequency oscillations are the combined
result of both vagus and sympathetic nerve inputs to
the heart.9 The ratio of low-to-high-frequency mod-
ulations of the RRI is a proposed index of the relative
contributions of the sympathetic and vagal systems
to heart-rate control. This index has been termed
“sympatho-vagal balance.”10 A high ratio suggests high
sympathetic activity relative to vagal activity, whereas
a low ratio suggests the opposite.7

Newer techniques of HRV analysis involve nonlin-
ear statistical methods. These methods account for
nonlinear physiologic responses to stimuli, that re-
flect interacting and mutually modulating processes.
Rather than attempt to dissect out the relative contri-
butions of high-frequency and low-frequency oscilla-
tions in the heart rate, these methods quantify the
amount of irregularity or complexity in the ECG signal.
Numerous studies have demonstrated that the healthy
heart rate is characterized by a certain level of complex-
ity, and that disease, as well as normal ageing, are char-
acterized by a decrease in such complexity.11–14 We pre-
viously applied both frequency-domain and nonlinear
techniques to the analysis of ECG during hemorrhagic
shock and found that hypovolemia leads to a decrease in
RRI complexity, paralleled by a decrease in high-
frequency power (HF). With resuscitation, complexity
and HF were restored.15

The purpose of this study was to characterize the
cardiovascular response to burns and resuscitation by
means of nonlinear and frequency-domain analysis of
the ECG. We hypothesized that the early postburn
period is associated with a decrease in heart-rate com-
plexity and an increase in sympatho-vagal balance,
and that resuscitation leads to restoration of these
values.

METHODS

This study was approved by the Institutional Review
Board of Brooke Army Medical Center, Fort Sam
Houston, Texas, and was conducted at the U.S. Army
Institute of Surgical Research (U.S. Army Burn Center).

Patient Selection
ECG waveform data collected in the burn unit from
27 patients admitted for burn resuscitation on an-
other ongoing research protocol were screened for
the study. Patients were excluded from the study if
the following criteria were not met: 1) ECG of 800
RRI in length was available for analysis at the required
timepoints; and 2) ectopic beats were present within
the analyzed data segments, based on the modified

Brooke formula.1 Fluid infusion rates were adjusted
based on the urine output.

ECG Analysis
The ECGs of 13 patients were continuously moni-
tored from the time of admission, were digitally re-
corded at 500 Hz to a computer throughout the first
2 days postburn, and were stored for off-line analysis
at a later timepoint. The ECGs were semiautomati-
cally analyzed by an operator who was blinded to any
aspects of patient care. Information obtained during
our study was not available for decision making by the
providers. ECG analysis was conducted at four dis-
crete timepoints: upon admission (an average of
8.31 � 0.35 hours after burn (hour 8), as well as at
12, 24, and 36 hours after burn. For each timepoint,
800-beat sections of ECG were imported into
WinCPRS software (Absolute Aliens Oy, Turku, Fin-
land). Eight hundred beats were used consistently
because the variables calculated (approximate en-
tropy [ApEn] in particular) are affected by the num-
ber of R waves in the dataset.16 Automatic identifica-
tion of R waves was performed by the software, and
manually verified. The software generated the instan-
taneous RRI time series (ie, the beat-to-beat RRI as a
function of time), and variables were calculated as
described previously.15,17 The following are the main
variables which were calculated.

Frequency-Domain Techniques
Fast Fourier Transform
1. Total power: reflects the strength of periodic

oscillations within the RRI signal throughout
the entire power spectrum.

2. Low-frequency component of the RRI power
spectrum, or low-frequency power (LF): influ-
enced by both sympathetic and vagal activity.

3. HF: influenced by vagal activity.
4. LF/HF ratio: reflects sympatho-vagal balance,

ie, the relative contributions of the sympathetic
and vagal modulations to the heart.

5. The LF and HF were normalized by dividing the
LF and HF spectra by the total power. This
yielded normalized powers (LFnu, HFnu). These
values may provide a better picture of autonomic
activity than the non-normalized values.7 All val-
ues reported are normalized values.

Complex Demodulation. The method of CDM
provides continuous assessment of the amplitude of
high- and low- frequency fluctuations in the RRI.18

1. CDM LF: a measure of the amplitude of low-
frequency fluctuations in the RRI.
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2. CDM HF: a measure of the amplitude of high-
frequency fluctuations in the RRI.

3. CDM LF/ CDM HF: reflects sympatho-vagal
balance, ie, the ratio of the amplitudes of
sympathetic-to-vagal influences on the heart.

Nonlinear Analysis Techniques
1. Approximate entropy and sample entropy

(SampEn): measure the amount of irregularity in
the RRI signal.17 ApEn determines the condi-
tional probability of finding specific patterns in the
time series, ie, the logarithmic likelihood that a
run of patterns that is close remains close on the
next incremental comparison. The template pat-
terns are constructed from the signal itself, and no
a priori knowledge of the system is needed.
SampEn is a similar concept to ApEn, with the
computational difference that the vector compar-
ison with itself is removed.

2. Fractal dimension by curve lengths (FDCL):
measures the degree to which the RRI time series
resembles a fractal, ie, possesses self-similarity at
multiple scales. A section (curve) of the signal is
conceptualized as consisting of a number of short
segments. FDCL counts the number of such seg-
ments of various lengths needed to follow the
curve of the signal. For the fractal dimension by
dispersion analysis (FDDA), a new signal is cre-
ated from the means of sets of two adjacent values
in the original signal. Groups (m) of adjacent data
points (4, 16, etc.) are used. The Log SD (m) is
plotted against log m. FDDA is defined as 1-slope.
FDDA has values between 1 (constant signal) and
1.5 (maximally fractal or random signal).17

3. Detrended fluctuations analysis (DFA): deter-
mines fractal-like correlation properties and un-
covers short- and long-range (power-law) corre-
lations within the signal.19 Briefly, the RRI time
series is segmented into short boxes of a certain
length. The degree of dispersion of the data from
the linear trend within each box is calculated as the
sum of squares of the residuals after subtraction of
the linear regression line (detrending). Totals of
residuals from consecutive boxes are calculated for
short4–10 or longer segments of RRI intervals. In
this study we explored the short-term scaling ex-
ponent by DFA.

4. Similarity of distributions (SOD): explores the
probability of similar RRI signal amplitude dis-
tributions as a function of time.20

5. Symbol-dynamics indices: symbol distribution en-
tropy (SymDis), percentage of forbidden words
(FW), and bit-per-word entropy (BPWEn): collec-
tively measure the probability of patterns within

the RRI time series, which is encoded in sym-
bols.21 Namely, SymDis is based on recreation
of the dynamics of a complex system in phase
space by coarse graining.21 The phase space is
divided into sections of RRI � 2 SD of the
normal-to-normal RRI and � 1 SD of normal-
to-normal RRIs. Each possible location within
these four regions is encoded as symbols 0 to 3,
creating four possible locations within the phase
space. The order in which the dynamics of the
system visits the possible encoded regions cre-
ates a symbol distribution sequence, SymDis.
Symbol sequences are encoded into words (2–3
symbols in length). The frequency of occur-
rence of each word is then counted and the
normalized entropy (BPWEn) of these words is
calculated from a histogram. If the probability
of a word sequence is �.001 the word is con-
sidered forbidden. The number of FW is
counted as a percentage.

6. Signal stationarity (StatAv): assesses whether the
mean and standard deviation of the signal changes
over time during each data set.22

In addition, baroreflex sensitivity was calculated in
the time domain by the sequence method.

Statistical Analysis
Repeated-measures analysis of variance was per-
formed using SAS version 9.1 (SAS Institute, Cary,
NC) to compare changes in variables compared to
admission values. Data are presented as means �
SEM. When appropriate, non-normally distributed
data were logarithmically transformed before statisti-
cal analysis. A P value of �.05 was considered indic-
ative of statistical significance.

RESULTS

ECG waveforms from 27 patients were screened. Af-
ter exclusion of 14 patients, ECGs from 13 patients
(nine men and four women) were used in this study.
The mean age of the patients was 55 � 5 years; weight
85 � 6 kg; total body surface area (TBSA) burned
36 � 6%; and 11 � 5% full thickness. Three subjects
had inhalation injury. All but three subjects survived to
hospital discharge. One patient died 2 days after admis-
sion due to cardiopulmonary arrest, and the two other
patients died 61 and 126 days after admission both due
to multiorgan failure (MOF) and sepsis. Ten patients
received mechanical ventilation (eight, high-frequency
percussive ventilation; one, airway pressure release ven-
tilation; and one, synchronized intermittent mandatory
ventilation with pressure support). Pain control was ac-
complished with fentanyl and midazolam in nine pa-
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tients with periodic morphine administration as needed
in the other four. Two patients (one of them an eventual
nonsurvivor that developed MOF) received vasoactive
medications throughout the study.

Heart rate and blood pressure did not change sig-
nificantly during resuscitation. Cumulative results of
fluid resuscitation and hourly urine output are sum-
marized in Table 1. The total volume infused during
the first 24 hours postburn was 5.94 � 1.03 ml/kg/
TBSA burned.

Frequency-domain results are presented in Table 2.
Changes in these metrics were not significant.
Baroreflex sensitivity did not change.

Nonlinear results are provided in Table 3. Mea-
sures of complexity (ApEn and SampEn) were both
low at hour 8. These metrics increased in concert,
reaching values (1.22 � 0.04 for ApEn) at hour 36
similar to those described for ambulatory individu-
als23; see also Figure 1. FDDA increased at hour 12.
FDCL did not change. The short-term fractal corre-
lations within the RRI as measured by DFA were high
at hour 8 compared with normal values (DFA � 1 for
healthy individuals). Subsequent changes in DFA
were insignificant at hours 24 and 36. SOD decreased
at hour 12. FW and StatAv both decreased at hour 12.
BPWEn and SymDis both increased significantly at
hour 24 (Table 3).

DISCUSSION

This report introduces the use of RRI analysis as a tool
for improving our understanding of heart-rate control
during the early postburn period. There were 2 principal
findings: 1) a state of low RRI complexity, as measured
by ApEn and several other complementary but compu-
tationally different nonlinear metrics, characterized pa-
tients during early postburn period; 2) postburn resus-
citation led to progressive increases in RRI complexity,
reaching normal levels at 36 hours. These changes all
occurred in the absence of changes in the heart rate or
blood pressure.

Nonlinear Analyses as Markers of
Physiologic Status
Physiologic signals such as the heart rate are inherently
complex and dynamic, and feature irregular patterns of
complex variability. This structural complexity of the
signal is a consequence of mutual interactions of cardiac
control with other organ systems (eg, the respiratory
sinus arrhythmia), and of multiple cause-effect relation-
ships featuring nonlinear behavior.24–26 In a nonlinear
system, a change in one input variable may lead to dis-
proportionate changes in the other component vari-
ables; these changes may be described by nonlinear
functions involving products and powers.14,25,27,28

Table 1. Resuscitation and urine output

Variable Hour 8 Hour 12 Hour 24 Hour 36

P

8 vs 12 8 vs 24 8 vs 36

Resuscitation (ml/kg) 68.44 � 11.59 110.22 � 23.43 205.11 � 40.83 257.96 � 46.32 �.001 �.001 �.001
Resuscitation (ml/kg/TSBA) 2.13 � 0.46 3.16 � 0.58 5.94 � 1.03 7.51 � 1.10 �.001 �.001 �.001
Urine output (ml/kg/hr) 0.53 � 0.15 1.10 � 0.30 0.69 � 0.09 1.51 � 0.49 .1448 .4401 .0574
Urine output (ml/hr) 69.23 � 22.91 78.15 � 25.32 51.54 � 5.74 117.77 � 28.53 .5096 .7447 .1392

Table 2. Frequency-domain and complex demodulation analysis results

Variable Hour 8 Hour 12 Hour 24 Hour 36

P

8 vs 12 8 vs 24 8 vs 36

RRI 614.31 � 46.35 596.69 � 35.65 646.31 � 35.25 598.46 � 35.30 .89 .59 .92
BRS 347.70 � 199.39 365.50 � 197.57 344.06 � 192.32 203.35 � 125.25 .94 .90 .94
LF 0.59 � 0.10 0.56 � 0.08 0.47 � 0.07 0.51 � 0.08 .96 .21 .50
HF 0.38 � 0.09 0.42 � 0.08 0.48 � 0.06 0.43 � 0.07 .82 .41 .89
LF/HF 4.42 � 1.29 3.36 � 1.09 1.41 � 0.27 2.10 � 0.59 .92 .30 .24
CDM LF 9.61 � 3.14 8.62 � 2.66 7.00 � 2.05 7.15 � 1.97 .68 .24 .40
CDM HF 5.23 � 1.18 4.77 � 1.05 6.62 � 1.42 6.00 � 1.55 .95 .40 .80
CDM LF/CDM HF 1.63 � 0.35 1.63 � 0.30 0.93 � 0.14 1.24 � 0.23 .76 .17 .78
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Nonlinearity is an intrinsic feature of the cardiovascular
system,14,16,28 that results in RRI irregularity.29 Thus, the
structural complexity of the RRI may be a reflection of the
regulatory complexity of its underlying control system.

In the current study, complexity was measured by
several computationally different techniques. From a
practical standpoint, the entropy methods—ApEn and
SampEn—quantify structural differences within the
RRI signal over time. Via assessment of the randomness
within the signal, they point to predictability of the next
pattern within the signal.17 If the probability of a repet-
itive pattern in the signal is high, the signal is deemed
regular and low in entropy, which may imply a de-
creased amount of regulatory feedback. In this study,
the postburn period was characterized by a low entropy
state as measured by ApEn and SampEn at 8 hours,
suggesting a considerable decrease in the amount of
cardiovascular regulation.

This loss of complexity could signify more simple
control of the system in response to immediate, life-

threatening stress with “prioritization” of vital con-
trol mechanisms. Alternatively, disassociation of reg-
ulatory interconnectedness between organ systems
may also be a possible mechanism for decreased com-
plexity.26,30 Our observation that resuscitation re-
stored complexity to values similar to those seen in am-
bulatory persons (ApEn of about 1.2)23 is new and may
be clinically significant, pending further verification in
larger cohorts. Buchman suggested that restoration of
functional interconnectedness between organ systems
may be an important target for therapy30; the current
study may provide evidence of the effectiveness of resus-
citation in restoring regulatory complexity—but the ex-
act mechanisms are, at this point, unclear.

Our current data are consistent with our previous
findings in a swine model of survivable hemorrhagic
shock, in which complexity as measured by ApEn and
SampEn decreased with blood loss and was restored
with resuscitation.15 Using the same metrics, in a
model of severe hemorrhagic shock in sheep we also
observed a decrease in RRI complexity that returned
to baseline levels with resuscitation.6 We also found in
prehospital trauma patients that a state of decreased
RRI complexity differentiated eventual nonsurvivors
from survivors.31 Thus, the current findings of de-
creased complexity during postburn period and res-
toration with resuscitation are consistent with other
work and build growing confidence in the potential
use of nonlinear metrics as “new vital signs” that re-
flect changes in cardiovascular regulatory complexity
during critical illness.

Complexity is also reflected in the fractal organiza-
tion of the RRI signal. A fractal is a structure which is
self-similar regardless of scale.32 This means that pro-
vided a suitable magnification, shorter sections of the
RRI are similar in structure to longer sections. The
increase in FDDA at 12 hours points to increased RRI
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Figure 1. Changes in complexity as measured by ApEn
during postburn resuscitation. Timepoint hour 8 denotes
admission to the burn intensive care unit (mean time 8.4
hours after injury). Timepoints Hour 12, Hour 24, Hour
36 show respective times after burn in hours. Asterisks de-
note significant changes vs baseline (*P � .05, **P � .005,
***P � .001). Arbitrary units.

Table 3. Nonlinear analysis results

Variable/Timepoint Hour 8 Hour 12 Hour 24 Hour 36

P

8 vs 12 8 vs 24 8 vs 36

ApEn 0.89 � 0.06 1.08 � 0.06 1.18 � 0.05 1.22 � 0.04 .03 .0010 .0003
SampEn 0.83 � 0.08 1.11 � 0.08 1.26 � 0.07 1.29 � 0.07 .01 .0005 .0003
FDCL 1.69 � 0.04 1.73 � .04 1.78 � 0.02 1.78 � .03 .57 .09 .09
FDDA 1.12 � 0.03 1.22 � 0.03 1.18 � 0.03 1.19 � 0.04 .02 .23 .15
DFA 1.39 � 0.13 1.38 � 0.09 1.13 � 0.10 1.16 � 0.08 .99 .07 .18
SOD 0.20 � 0.04 0.15 � 0.01 0.17 � 0.03 0.17 � 0.02 .03 .29 .49
FW 55.92 � 2.92 45.08 � 4.93 46.62 � 3.77 46.69 � 2.92 .046 .19 .06
BPWEn 3.63 � 0.22 4.15 � 0.19 4.25 � 0.11 4.13 � 0.11 .11 .03 .10
SymDis 0.61 � 0.04 0.69 � 0.03 0.71 � 0.02 0.69 � 0.02 .11 .03 .10
StatAv 0.83 � 0.05 0.67 � 0.06 0.74 � 0.04 0.73 � 0.07 .04 .39 .30
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signal fractality with resuscitation which is important
in the context of a comprehensive assessment of im-
provement in signal dynamics. A signal that is more
fractal in structure is more complex and more richly
regulated. One of the more powerful nonlinear tools
is detrended fluctuation analysis (DFA), which mea-
sures the self-similarity of fractal processes by quanti-
fication of the short- and long-term correlations in
the data.19 Normal RRI signals feature a certain
amount of such correlations, which render the overall
dynamics of the system to be neither completely ran-
dom nor completely organized, with a normal DFA
value of 1. Deviations from this value in either direction
are abnormal. In this study the short-term correlations
in the RRI signal were increased (1.39), implying ab-
normal cardiovascular regulation at hour 8 postburn,
but showed a trend (nonsignificant changes) toward
normalization of the values at hour 24 and 36. In the
work of others, abnormal DFA predicted increased
length of stay in the intensive care unit after coronary
grafting33; our findings are therefore consistent with
literature indicating an association between abnormal
RRI correlations and critical illness.

SOD is a method that explores the probability of
similar RRI signal amplitude distributions as a function
of time.20 SOD decreased in association with resuscita-
tion at hour 12, signifying an increase in irregularity of
RRI signal distribution and thus a state of higher com-
plexity at hour 12 when compared to hour 8. In our
previous work, nonsurviving prehospital trauma pa-
tients had a mean SOD value of 0.28 whereas survivors
had a significantly lower value at 0.19.31

The symbol-dynamics indices are generated by a
process which converts the RRI signal to a sequence
of symbols that represent the dynamics of the signal in
phase space over time.21 In our study, the FW showed
a decrease at 12 hours, pointing to a decrease in the
percentage of pathological patterns (low probability
locations within the phase space) in the signal and a
trend toward normal values in the signal dynamics
with resuscitation. BPWEn and SymDis measures in-
creased at hour 24. These findings are consistent with
our previous results, in which the symbol-dynamics
indices decreased with hemorrhagic shock and were
restored with resuscitation.15 Others have reported
on decreases in the symbol dynamics measures during
hypotension in dogs.22 Because the symbol-dynamics
measures are computationally distinct from the other
nonlinear measures used in this study, the uniformity
of the changes with the other metrics explored in this
study lends additional confidence to the results.

Assessment of signal stationary is an important goal
during waveform analysis because data nonstationar-
ity undermines the reliability of the frequency-

domain analysis techniques. Nonstationary signals are
those in which the mean and standard deviation
change during the course of a data set (ie, at a given
time point) as can be expected in real-life unstable
patients. StatAv is a measure of stationarity that as-
sesses the baseline shifts of the signals; it is higher with
less stationary signals.22 StatAv at the early postburn
period (0.83) was similar numerically to values doc-
umented by us in prehospital trauma patients
(0.82).31 In this study StatAv decreased at hour 12
but did not change thereafter, showing that early re-
suscitation increased StatAv.

Frequency-Domain Analysis
Frequency-domain measures (such as fast Fourier
transform) and CDM quantify the strength of the
periodic oscillations in the RRI, and may provide in-
formation about the effect on the RRI of specific
branches of the ANS. The HF of the RRI, which
measures oscillations at the respiratory rate, is related
to vagal cardiac activity. The LF of the RRI, which
measures oscillations at a slower rate, is affected by
both vagal and sympathetic cardiac activity.7,34 The
ratio of low-to-high-frequency oscillations has been
proposed as an index of the balance of sympathetic to
vagal cardiac control. One would expect a high
sympatho-vagal balance to be a reflection of auto-
nomic compensation postburn which would be likely
to decrease with restoration of volume. In the current
study observed decreases in sympatho-vagal balance
as measured by both LF/HF and CDM LF/CDM
HF were not significant. Previously, we observed an
increase in sympatho-vagal balance during progres-
sive hemorrhagic shock.6 Lack of significance in the
frequency-domain results, in the present study, may
be explained by the lower sensitivity of these methods
to dynamically changing conditions.

Autonomic correlates for the complexity metrics
are not yet clearly defined in the literature although
both we6,15 and others22 have shown unidirectional
changes in complexity measured by ApEn and vagal
modulation of the heart as measured by the HF com-
ponent of the frequency domain analysis. Thus, we
speculate that the autonomic adjustments postburn
may, at least in part, involve restoration of vagal in-
fluences on the heart.

Perspective
This study is the first that applies linear and nonlinear
analysis of ECG to burn patients. Until additional
prospective studies in large patient cohorts are com-
pleted using a variety of ECG waveform analysis tech-
niques, we recommend exploration of multiple meth-
ods during the search for new vital signs. This
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approach will ensure both complementary informa-
tion as well as increase the reliability of the findings.
To date, however, both animal and human data sug-
gest that the entropy-based estimates of complexity
(ApEn, SampEn), the fractal correlation metric DFA,
and the SOD respond most consistently to hypovo-
lemia and resuscitation.

Evaluation of RRI complexity can be done nonin-
vasively, in real time and with minimal requirements
for computing power, once the relevant analytic al-
gorithms are incorporated to a computer chip or
PDA—thus making it a potentially useful tool for
remote monitoring.

In the three patients that eventually succumbed to
their injuries, initially diminished levels of complexity
at admission to the hospital (mean 0.82) were not
different from the other patients within the investi-
gated cohort (mean 0.83) This, however, is not sur-
prising considering that two out of the three died 61
and 126 days after admission due to MOF. The one
nonsurvivor that died hours after our last analysis points
died abruptly due to cardiopulmonary arrest. The time-
resolution of the nonlinear analysis techniques in fore-
casting sudden cardiac death is under active exploration.
Thus, the monitoring, prognostic and diagnostic value
of complexity analysis is promising but remains to be
explored in large, well selected cohorts.

Finally, loss of functional interconnectivity and
regulatory loss between organ systems has been pro-
posed as a possible mechanism in pathogenesis of
multiple system organ failure.26 Nonlinear measures
have been used to track the return of such intercon-
nectivity following successful cardiac transplant.35,36

A more complete understanding of the effect of burns
and resuscitation on RRI complexity—and of the po-
tential utility of this approach in patient care—will
require a larger sample size, stratified by age, burn
size, and outcome. Until then, we speculate that the
current study may be an example of one of the phys-
iological benefits of resuscitation as a way of restoring
the integrity of cardiovascular regulatory pathways in
patients with burns.

Limitations
This retrospective analysis of ECGs in burn patients
undergoing resuscitation was conducted on “clean”
ECGs that were free of ectopy. This approach is com-
mon to HRV analysis at present. Other techniques
will be needed to exploit the information content of
ectopic beats.37 All of the metrics involved in this
study are influenced to some extent by the effects of
analgesia, sedation, and mechanical ventilation.

CONCLUSION

Loss of RRI complexity characterized patients after
burns, and resuscitation led to improvements in RRI
complexity by hour 36 to levels which are seen in
normal individuals. Improvements in complexity with
resuscitation were demonstrated by several computa-
tionally distinct statistical methods. Evaluation of car-
diovascular regulatory complexity may be useful for pa-
tient monitoring. Prospective, large-scale clinical trials
are warranted and will help determine the clinical utility
of various metrics derived from RRI analysis.
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